

Technical Strategic Plan 2019 for Decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc. (Explanatory Material)

September 9, 2019

Nuclear Damage Compensation and Decommissioning Facilitation Corporation

NDF

Table of Contents

- 1. Introduction
- 2. Risk sources at Fukushima Daiichi NPS and the future risk reduction strategy
- 3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS
 - [1] Fuel debris retrieval
 - [2] Waste management
 - [3] Contaminated water management
 - [4] Fuel removal from spent fuel pools
- 4. Handling critical enablers related to the comprehensive approach and smooth operation of the project
- 5. Local community engagement

1. Introduction

- Strategic Plan 2019 provides strategic recommendation on how to retrieve fuel debris from the first implementing unit.
- Mid-and-long-term directions that look at the overall efforts of the Fukushima Daiichi NPS, including waste management, are presented.

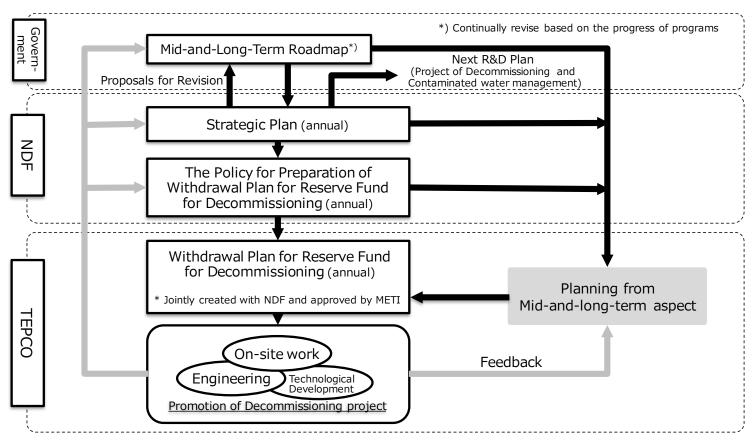


Fig. Positioning of the Strategic Plan based on the system of the Reserve Fund

2. Risk Sources at Fukushima Daiichi NPS and Future Risk Reduction Strategy (1/2)

Basic policy on decommissioning

To continuously and quickly reduce the radioactive risks caused by the accident that do not exist in a normal NPS

Progress in decommissioning

Fuel debris retrieval

Unit 2 (Feb 2019) Deposit contact investigation in the PCV revealed that the deposits are movable at the bottom
of the PCV pedestal and on the platform.

Waste management

• (Jun 2019) Waste storage management plan was revised.

Contaminated water management

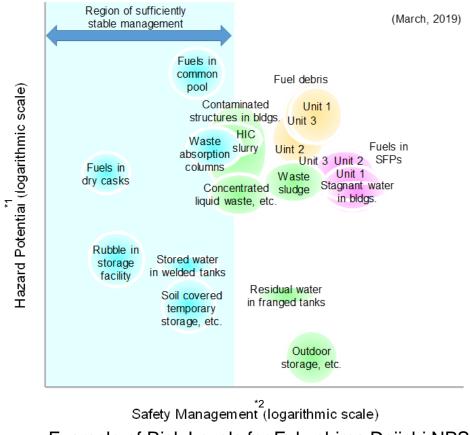
[REMOVING] (continuing) Contaminated water is being purified by multi-nuclide removal equipment, etc.

[REDIRECTING] (Sep 2018) All areas of the land-side impermeable wall were frozen.

[RETAINING from leakage] (Mar 2019) Transfer of the water purified by the purification equipment to welded tanks was completed.*

[Treatment of stagnant water in buildings] (in 2018) Disconnection of the communication section between Units 1 and 2 was achieved.

* As for the treatment of the water stored in the welded tanks, comprehensive discussion including social standpoints has been made in the government-led subcommittee


Fuel removal from spent fuel pools

- Unit 1 (continuing) Removal of rubble on the operating floor is ongoing.
- Unit 2 (Nov 2018 to Feb 2019) Investigations were conducted on the contamination state of the operating floor.
- Unit 3 (Apr 2019) fuel removal from SFP was started.

2. Risk Sources at Fukushima Daiichi NPS and Future Risk Reduction Strategy (2/2)

• The interim goal of the risk reduction strategy is to bring the risk levels into the "Region of sufficiently stable management" (areas in pale blue).

Example of Risk Levels for Fukushima Daiichi NPS

- *1 : An index of impact of the event, that depends on inventory (radioactive material), form of the risk source and time allowable until the manifestation of risk in case of loss of safety function.
- *2 : An index of likelihood that an event will occur, that depends on integrity of facility and on the packaging and monitoring status of risk source.

3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS ([1] Fuel debris retrieval)

Goals

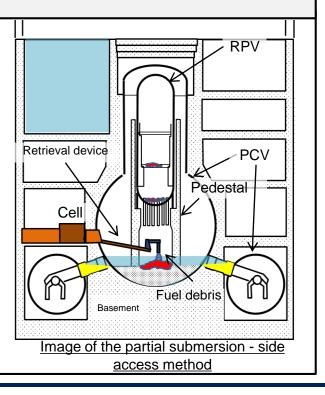
- (1) **Retrieve fuel debris safely after thorough and careful preparations**, including safety measures, and bring them to **the state of stable storage under full management**.
- (2) Toward determination of the fuel debris retrieval methods for the first implementing unit in FY 2019, and start of fuel debris retrieval work for the first implementing unit in 2021, <u>necessary approaches will be taken according to the Policy on Fuel Debris Retrieval</u>.

Policy on fuel debris retrieval

① <u>Step-by-step approach</u>

- Flexibly coordinate the direction while proceeding with the retrieval work

② Optimization of the overall decommissioning work


- Examine fuel debris retrieval work as a comprehensive project, including coordination with other works

3 Combination of multiple methods

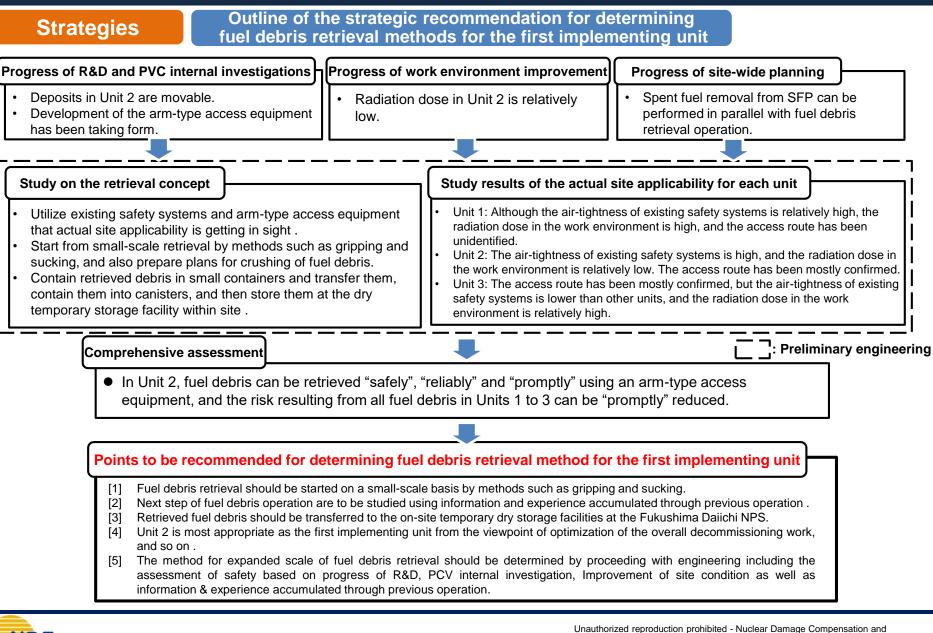
- Combine the optimum retrieval methods for each unit, depending on the locations where fuel debris is considered to be present

(4) Approach focused on partial submersion method

- Make efforts to focus on a more feasible partial submersion method
- 5 <u>Prioritizing fuel debris retrieval by access to the bottom of the</u> <u>PCV from the side</u>
 - It should be considered that the accessibility to fuel debris and the removal of spent fuel can be accomplished in parallel

Unauthorized reproduction prohibited - Nuclear Damage Compensation and Decommissioning Facilitation Corporation

3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS ([1] Fuel debris retrieval)


Strategies

Approach to risk reduction in fuel debris retrieval work

- Since retrieving of fuel debris by partial submersion method is unprecedented project in the world and the information on the condition inside the PCVs is limited, it is important to proceed with operation carefully upon enough and well making preparations.
- By starting with small-scale retrieval basically using existing safety systems such as confinement (hereafter referred to as "existing safety system" without significant modification in the state such like processing PCV wall, a series of operations from retrieval to storage will be performed on a continuous basis, the risk of fuel debris will be reduced and quick effectiveness of the required systems will be ensured.
- Expected effects by small-scale retrieval in the first implementing unit
 ✓ Equipment, facilities and safety systems, including remote operations, can be verified.
 ✓ TEPCO can exploit this occasion as a process of mastering fuel debris retrieval operation.
 ✓ Information helpful to understand the situation inside PCV can be obtained.
- After retrieval in the first implementing unit, the amount of fuel debris to be retrieved will be increased based on the knowledge obtained, or retrieval will be started in units other than the first implementing one.
- To expand the scale of retrieval or perform the retrieval operation in units other than the first implementing unit, it is necessary to examine the actual site applicability based on the concept of safety systems, and further improve the site environment including further radiation dose reduction, lowering of the water levels and securing of the premises, and conduct internal investigations and R&D activities.

3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS ([1] Fuel debris retrieval)

NDF

3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS ([1] Fuel debris retrieval)

Challenges

Comprehensive understanding of PCV conditions by continued internal investigations, etc.

- Internal investigations and sampling must be carefully prepared over a certain period of time.
 - Unit 1: Investigations on the distribution of deposits (including a small-amount sampling) are scheduled to begin in the second half of FY 2019.
 - Unit 2: Deposit contact investigations were conducted in the second half of FY 2018 (conducted on 2/13). Investigations on the distribution of deposits (including a small-amount sampling) are scheduled to begin in the second half of FY 2019.
 - Unit 3: The necessity of further investigations by means of measures for lowering the water levels in PCVs and using an submersible-type access robot are being examined.

Fig. Deposit contact investigations in Unit 2* * Source: TEPCO Approach to the commencement of fuel debris retrieval from the first implementing unit (Unit 2)

- The method of retrieving fuel debris from Unit 2 should be determined in line with the recommendations.
- In determining the method of fuel debris retrieval in Unit 2, the following issues need to be considered.
 - Removal of obstacles in consideration of enhancing the prevention of the scattering of radioactive materials
 - Reduction of the on-site radiation dose on the 1st floor of the reactor building
 - Adjustment of work interference in cases where the operations of fuel removal from SFP and fuel debris retrieval are carried out in parallel

8

3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS ([2] Waste management)

Goals

- (1) As the approaches to solid waste storage, <u>the Solid Waste Storage Management Plan ("Storage Management Plan") is appropriately</u> <u>developed, revised and implemented</u>, including waste prevention, volume reduction and monitoring, while updating the estimated amount of solid waste to be generated in the next 10 years periodically.
- (2) As an approach to processing/disposal, countermeasures integrated from characterization to processing/disposal of solid waste are studied from expert point of view, and. the prospects of a processing/disposal method and technology related to its safety should be made clear by around FY 2021

Strategies and Challenges

- Promotion of characterization and enhancement of analysis systems and technical capabilities
- ✓ Through the development of radioactive material analysis and research facilities and the fostering of analytical human resources, technologies, facilities, and the system should be established to continuously, timely and appropriately carry out the analytical work necessary for decommissioning.
- Development of the processing/disposal concept and safety assessment method
- For candidate technologies for preceding processing, reasonable and feasible technologies should be selected, and a safety assessment method should be developed.

- Technical studies for on-site construction, etc., for each item
- Research and development

	Fiscal Year	2015	2016	2017	2018	2019	2020	2021	2022 and later
	Milestones		Compilation of basic concept of processing/disposal			Based Clarification of tech processing/disposal		nical prospects on	
	1. Waste Characterization								
	(1) Analysis data acquisition, management, etc.	Planning/updating analysis plan, conducting analysis, characterization, accumulation/evaluation/manage						ement of analysis data	
	(2) Improvement of analysis capacity							*	
y		Development of radioactive material analysis and research facilities							
		Human resource development for analysis personnel							
								*	
(3) Improvement in efficiency of waste characterization Optimization of the number of analytical samples, review of nuclides to be analyzed, simplified and speed-up analysis methods, etc.									
	2.Storage								
	(1) Storage management plan	Development and review of the Storage Management Plan							
								*	Study on safety
.	(2) Study and evaluation of Storage method	Study on Storage measures of secondary waste from water treatment						improvement	
ty	(3) Study and evaluation of Storage methods								measures
	of solid waste generated during fuel debris	Study on Storage method, storage containers, and the way of putting waste into container							
	retrieval								
	 Development of processing/disposal concept and safety assessment method 					selection s	ablishment of a ystem of prece sing methods		Use of a selected system
		Survey and development of a safety assessment method for each disposal method							
ļ		Survey on c		Technic		t of processinh ion and immob		ated to	

Unauthorized reproduction prohibited - Nuclear Damage Compensation and Decommissioning Facilitation Corporation

9

3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS ([3] Contaminated water management)

Goals

- (1) Under the three basic principles concerning contaminated water issues ("Removing" contamination sources, "Redirecting" fresh water from contamination sources, and "Retaining" contaminated water from leakage), while continuing <u>reinforced and optimum operations of the</u> water level control system, multilayered measures should be taken to complete the processing of the stagnant water in buildings by 2020.
- (2) Considering the total decommissioning process, including the full-scale fuel debris retrieval beginning in near future, a long-term strategy should be examined for the measures of the contaminated water.

Strategies and							
Challenges		Fiscal Year	2019	2020	2021	2022	2023
Steady execution o water management Mid-and-Long-term	t indicated in the	Milestones		the total amount of co about 150 m per the treatment of stagna	day		
Study on contamina management based	d on the	 Contaminated water management as shown in the mid-and-Long-term Roadmap 					
relationship with fue		· REMOVING contamination sources	Treatment with purification Systems				
examination of the including enhance	s necessary to proceed with the amination of the entire system, cluding enhancement of the onitoring to confirm the ncentration of radioactive materials the inlet of the water treatment stem.	REDIRECTING fresh water from contamination sources	Control by groundwater by-pass, subdrainage and land-side impermeable walls Paving the site, Removal of rubble from the roof, Waterproofing				
concentration of ra		RETAINING contaminated water from leakage	To be responded properly according to generation			ide impermeable wall.	
monitoring system	Further enhancement is needed on monitoring system for water level of groundwater and radioactive materials for the purpose of steadily managing the groundwater surrounding the buildings as well as implementing regular inspections and updates of facilities for sure.	 Treatment for the stagnant water in the buildings 	Lowering the level stagnant water in	of groundwater/		Maintaining exposed floor line for turbine	
for the purpose of the groundwater so buildings as well a		(2) Contaminated water management in consideration of fuel debris retrieval	Determination of fuel debris retrieval methods for the first implementing unit Start of fuel debris retrieval from the first implementing unit Studies on PCV circulation cooling System and its monitoring method Taking required actions in the phase of fuel debris			/	

: On-site operation

Technical reviews for the on-site construction, etc., for each item

the rue stored in the <u>C</u>ommon <u>S</u>pent Fidel <u>S</u>torage F<u>p</u>oor

3. Technological strategies toward decommissioning of the Fukushima Daiichi NPS ([4] Fuel removal from spent fuel pools)

Goals

- (1) Risk assessment and management for the progress of the work will be carried out properly, and measures for safety and security including the prevention of the scattering of radioactive materials will be undertaken thoroughly. For Units 1 and 2, the removal of fuel in SFP will start by 2023. For Unit 3, the removal is scheduled to be completed in FY 2020.
- (2) By transferring the fuel stored in the common spent fuel storage pool to dry cask temporary custody facility in order to secure the capacity in the common spent fuel storage pool, the fuel removed from the spent fuel pools of Units 1 to 4 is to be appropriately stored in the common spent fuel storage pool.
- Based on the assessment of the long-term integrity and investigations for future treatment of the removed fuel, the future (3) treatment and storage methods of them will be fixed around 2020.

Fiscal Year 2019 2020 2021 2022 2023 **Strategies and Challenges** Start of fuel removal from unit 1 (by FY 2023) Milestones Start of fuel removal from unit 2 (by FY 2023) The evacuation order was lifted in the municipalities where the nuclear power plants is located, and efforts for the (1) Removal of fuel from the pool return of residents and reconstruction have been started. Careful efforts with more emphasis on safety are required. Rubble removal, etc. Cover installation, etc. Unit 1 Unit 1: Careful removal of rubble and continued Selection and examination implementation of measures to prevent radioactive Submit/Approval request to Unit 2 (plan selection) implementation plan/Preparation work dust dispersion during removal Dismantlement and Investigation Unit 2: In addition to the conventional method of completely modification of upper Construction, etc. of operating part of building, etc. floor, etc. dismantling the upper part of the operating floor, a method of accessing from the south side of the Unit 3 Fuel removal reactor building without dismantling, to the extent Procurement of dry casks, transfer of dry casks (2) Proper storage of removed fuel possible, is being considered from common spent fuel storage pool to the dry cask temporary custody facility Unit 3: The removal began this April and is expected to be ٠ Fuel removal from Unit 5 and 6 Implemented to the extent not affect the completed by the end of FY 2020 operations on Units 1 to Adding dry cask temporary custody facilities (3) Study on future treatment and On-site operation Determination of a treatment storing methods of removed spent : Technical reviews for the on-site construction, etc., /storage method fuel for each item

Unauthorized reproduction prohibited - Nuclear Damage Compensation and **Decommissioning Facilitation Corporation**

©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

11

2024

Fuel removal

Fuel

removal

4. Handling critical enablers related to the comprehensive approach and smooth promotion of the project

Comprehensive approach to the project

- Formulate a consistent long-term plan for the entire decommissioning process covering from the current status to the short, medium, and long term plans, and comprehensively manage of various efforts in line with this plan
 - Securing the lead time
 - Optimized allocation of limited resources (people, things, money, time, and space)
- In making specific use of the long term plan, set decision points at appropriate times while revising flexibly for effective operation of the plan

Handling critical enablers for smooth operation of the project

 The government, industry and universities associated with the nuclear industry as a whole to make steady efforts to foster and secure future researchers and engineers

R&D initiatives

- TEPCO places much more importance on its own technological development that is directly linked to actual site applicability.
- Management of R&D activities associated with engineering schedule, that the R&D results will be applied to the site in a timely and appropriate manner
- It is also important for universities and public research institutes to share awareness of issues identified at the decommissioning site.

Enhancement of international cooperation

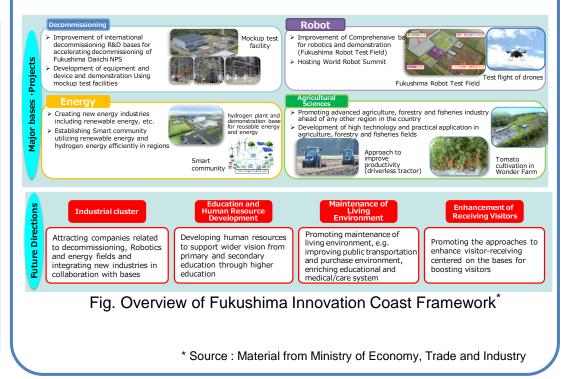
- Learning lessons from the legacy sites and treatment for preceding accident reactors to apply them to decommissioning through utilization of technologies and human resources cultivated in various nations, as a risk reduction strategy
- Establishment and strengthening of a long-term partnership with overseas decommissioning organizations
- NDF proactively participates in international joint activities, such as applying knowledge acquired from accident of Fukushima Daiichi and decommissioning process to other issues in order to respond to new concerns from overseas.

Unauthorized reproduction prohibited - Nuclear Damage Compensation and Decommissioning Facilitation Corporation

5. Local community engagement

Concept on local community engagement

- "Decommissioning and the reconstruction of Fukushima as an indispensable pair"
- To provide accurate information on decommissioning in a timely and appropriate manner, and to respond to requests from communities through attentive communication.

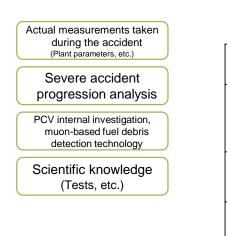

Actual efforts for better communication

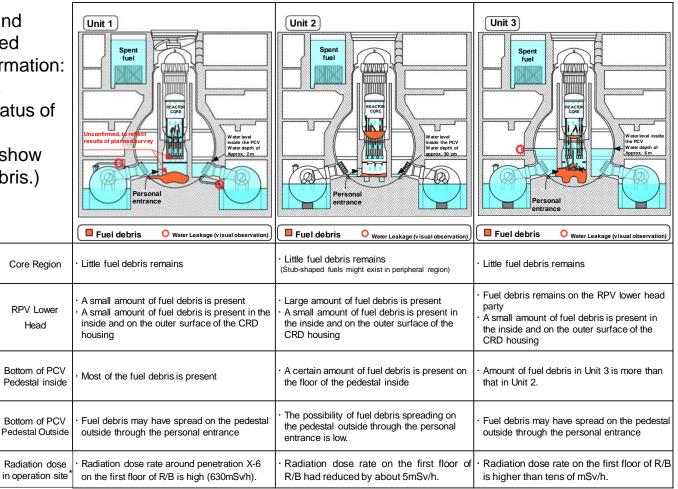
 Providing more in-depth information and developing an interactive communication in progressing decommissioning

The 4th International Forum on the Decommissioning of the Fukushima Daiichi NPS (Aug, 2019) (Day 1 "Considering the decommissioning of 1F with local residents" in the town of Tomioka) Decommissioning in line with the reconstruction of affected regions

- Addressing development of local human resources in cooperation with the "Fukushima Innovation Coast Framework".
- Compatibility between the safe and steady decommissioning and giving priority to local communities
- Development of an environment in which more local companies can participate in the decommissioning work through the resources possessed by relevant organizations

Unauthorized reproduction prohibited - Nuclear Damage Compensation and Decommissioning Facilitation Corporation

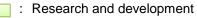

References



Unauthorized reproduction prohibited - Nuclear Damage Compensation and Decommissioning Facilitation Corporation ©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

Comprehensive analyses and evaluations will be conducted based on the following information:

- Distribution of fuel debris
- Access routes and the status of surrounding structures (The figures on the right show the distribution of fuel debris.)


* Data provided by TEPCO

Prepared based on the Achievement Report 2017, Subsidy for "The Government-led R&D program on Decommissioning and Contaminated Water Management (Advancement of the comprehensive internal PCV condition analysis)" provided by IRID, The Institute of Applied Energy, June 2018

Key Issues and Future Processes Concerning Fuel Debris Retrieval

l l					
Fiscal Year	2019	2020	2021	2022	2023
Milestones	Determination of retrieval method implemen	ds for the first	Start of fuel debris from the first impleme		
(1) Internal investigation etc.					
• The Government-led program on			Continue as necessary		
ecommissioning and ontaminated Water Management		/	2222222222222222222222222		
· Engineering					
Internal investigation etc.	Preparation for inv	estigation/ Internal invest	l igation / Characterization	of fuel debris (from retriev	ed sampling, etc.)
(2) Fuel debris retrieval					
•The Government-led program on Decommissioning and Contaminated Water Management			Continue as necessary		
· Engineering					
Fuel debris retrieval		Preparation for sma		- Small-scale retrieva - Preparation for expa	
			 On-site operation Technical reviews for 	the on-site construction	n, etc., for each item

16

Steady execution of contaminated water management indicated in the Mid-and-Long-term Roadmap

It is expected that preventive and multi-layered fundamental measures will be continuously implemented based on the three basic policies, to achieve the milestones indicated in the Mid-and-Long-term Roadmap

Milestones (key target processes) and the status of implementation as of August 2019

- [1] Reduction of the amount of contaminated water generated to approximately <u>150</u> <u>m³/day</u> (in 2020) \Rightarrow Currently underway
- [2] All of the water treated with purification equipment is stored in <u>welding-type tanks</u> (FY 2018) ⇒ Completed
- [3] **Disconnection of the communication sections** between Units 1 and 2 and between Units 3 and 4 was achieved for the stagnant water in buildings (in 2018) \Rightarrow Completed
- [4] <u>Reduction</u> of the amount of radioactive materials contained in the stagnant water in buildings <u>to approximately 1/10</u> of the level at the end of FY 2014 (FY 2018) ⇒ Approx. 2/10 of the level at the end of FY 2014 *1
- [5] <u>Completion of treatment of the stagnant water in buildings (In 2020)</u> *² ⇒ Currently underway
 - *1 Calculated amount of radioactive materials as of the end of 2014
 - (assuming that concentrations of stagnant water in each building are uniform.)
 - *2 Excluding reactor buildings

Storage Status of Spent Fuels, etc.

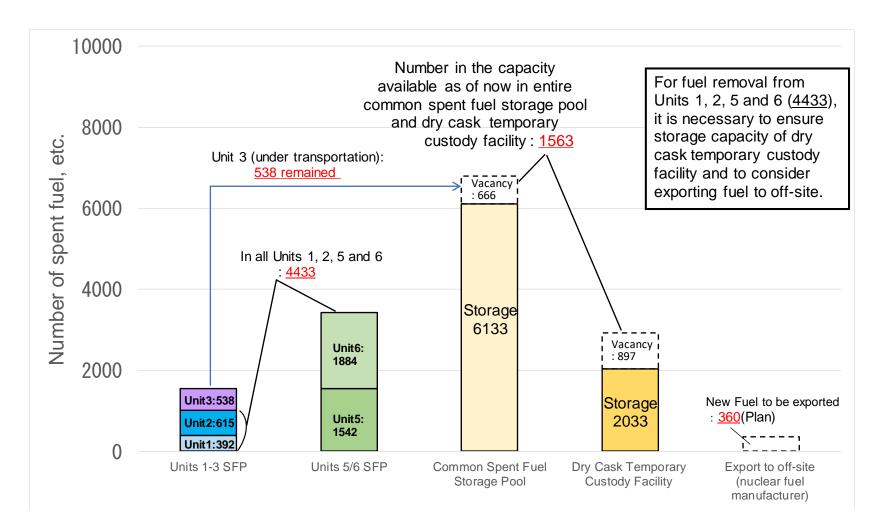


Fig. Storage status of spent fuel, etc. (as of July 25, 2019)

Basic Policies on Solid Waste

(Note) Numbered and titled by NDF for each item.

- **①** Thorough containment and isolation
- Containment and isolation shall be thoroughly carried out so that people will not access to radioactive materials to avoid significant radiation exposure.
- 2 Reduction of solid waste volume
- The amount of solid waste generated during decommissioning shall be reduced to the extent possible.
- **③** Promotion of characterization
- To promote studies on processing and disposal of solid waste, an appropriate characterization shall be performed in response to the increase in the number of samples for analysis.
- (4) Thorough storage
- Safe and reasonable Storage for generated solid waste according to their characteristics
- Ensuring adequate storage capacity for safe Storage within the site of the Fukushima Daiichi NPS
- (5) Establishment of selection system of preceding processing methods in consideration of disposal
- Before the technical requirements for disposal are determined, a method of selecting a processing (preceding processing) for stabilization and immobilization shall be established to select a preceding processing method.
- 6 Promotion of effective R&D with a bird's-eye-view of overall solid waste management
- Issues on R&D shall be identified through collaboration among the fields of characterization, treatment and disposal, with a bird's-eye-view on the overall solid waste management.
- ⑦ Efficient implementation of R&D projects from the perspective of overall solid waste management
- For ongoing safe and steady solid waste management, a continuous operational framework including development of adequate facilities and human resources shall be established.
- **(8)** Measures to reduce radiation exposure of workers
- Thorough radiation exposure control, health control, and safety management in accordance with relevant laws and regulations shall be established.

